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a b s t r a c t

The underground contour of a submerged rectangular dam, the angles of which are rounded off along
curves of constant magnitude of the seepage flow velocity is constructed in the case when the water-
permeable base is underlain by a confining bed, consisting of one horizontal and two curved sections,
which are the iso velocity lines of the seepage flow. The corresponding multiparameter mixed problem in
the theory of analytical functions is solved using the Riemann-Schwartz symmetry principle and a semi-
inverse version of the velocity hodograph method, first proposed by Polybarinova-Kochina and Kochina.
The results of numerical calculations are presented and a hydrodynamic analysis of the effect of the basic
physical parameters of the model on the shape and dimensions of the underground contour of the dam
and of the horizontal and curved sections of the confining bed is given.

© 2009 Elsevier Ltd. All rights reserved.

The problem of choosing the smooth underground profiles of the foundations of hydraulic installations was considered for the first
time in Ref. 1, where the so-called inverse boundary-value problem of the theory of the steady seepage of ground waters2 was mentioned.
This paper triggered the development of a whole research trend, that is, the search for the contours of hydraulic installations using some
properties specified for them, and led to the appearance of a number of publications, mainly belonging to the Kazan School of Theoretical
and Applied Mathematics (see Refs 3-8, for example). Using the Riemann-Schwartz symmetry principle and the semi-inverse version of
the velocity hodograph method,9-11, not only the design of the smooth underground contour of a submerged rectangular dam, with angles
rounded off along the iso-velocity lines of the seepage flow, was considered12 but the profile of the underlying curved confining bed, which
is also the iso-velocity line of the seepage flow, was determined as well.

The case when a confining bed with similar properties has a more complex configuration and consists of a horizontal section and two
curved sections is considered below. The limiting flow cases, associated with the degeneration of the conformal mapping parameters
contained in the solution, are noted: the Polubarinova-Kochina and Kochina case when the confining bed is horizontal over the whole of
its extent1,2 or consists of two circular arcs.12

1. Formulation of the problem

A plane steady flow under a water impermeable underground contour of a submerged rectangular dam ABCC1B1A1 (Fig. 1) is considered.
The flow domain is bounded below by a confining bed G1G, consisting of two curved sections G1F1 and FG and also, unlike the case considered
earlier,12 a horizontal section F1EF: the magnitude of the flow velocity along them is constant, as it is for the sections of the underground
dam contour BC and B1C1.

We introduce the complex potential of the motion � = � + i�, where � is the velocity potential, � is the stream function (the range of
variation of the variable � is shown in Fig. 2), and the complex coordinate z = x + iy, refered to �H and H respectively, where � is the seepage
coefficient and H is the pressure head acting on the installation. The problem consists of determining the positions of the curves BC, B1C1,
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Fig. 1.

Fig. 2.
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Fig. 3.

G1F1 and GF with the following boundary conditions

(1.1)

such that the seepage flow velocity along the curved sections of the underground contour of the dam BC and B1C1 as well as along the
horizontal section F1EF and the curved sections G1F1 and GF of the confining bed have constant values �0 (specified) and u0 (required)
respectively (0 ≤ u0 ≤ �0).

2. Construction of the solution

Consider a domain of the complex velocity w corresponding to boundary conditions (1.1) (Fig. 3). This domain, which is a circular
decagon with right angles and two cuts C1DC and F1EF, belongs to the class of polygons in polar meshes (see Ref. 13) which are bounded
by the arcs of concentric circles and the sections of straight lines passing through the origin of coordinates.

Unlike the possibilities for solving the problem associated either with the transformation of such polygons into linear polygons with
subsequent use of the Christoffel-Schwartz formula14,15 or with the integration of the corresponding equations of the Fuchs class16–19

1 the Riemann-Schwartz symmetry principle5,13 is used below, which leads to a considerable reduction in the unknown constants. The
conformal mapping is carried out directly here in a closed form in terms of special functions, which is simple and convenient for subsequent
practical purposes, and the unknown mapping parameters are determined simultaneously when constructing the solution.

In view of the complete symmetry in the z, � and w planes, we will confine ourselves to considering the right-hand half of the domain
of motion ABCDEFG (Fig. 1) and the similar domains corresponding to it in the � and w planes of Figs 2 and 3.

Taking account of the specific properties of polygons in polar meshes, associated with the abundance of right angles, it is convenient in
the conformal mapping to take the rectangle in the � plane20 (Fig. 4)

(2.1)

as the canonical domain, where K(k) is a complete elliptic integral of the first kind.21 The function, performing the conformal mapping
of this rectangle into a quadrant of the annulus of the complex velocity plane w, is expressed as

(2.2)

from which the physical parameter u0 = �0exp(−��/2) is determined.

1 Also, see: Kochina PYa, Bereslavskii EN, Kochina NN Analytical theory of differential equations of the Fuchs class and some problems of underground hydrodynamics. Part 1.
Preprint No. 567. Moscow:Inst. Problem Mekhaniki Ross Akad Nauk;1996.
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Fig. 4.

We now conformally map the rectangle of the auxiliary variable � into the domain of the complex potential � (Fig. 2). As a result, we
obtain

(2.3)

Here, F(�, m) is an elliptic integral of the first kind,21 and sn(�, k), cn(�, k) and dn(�, k) are Jacobi elliptic functions.
At the same time, the relation

(2.4)

connecting the physical parameters Q and H must be satisfied.
To solve the problem, we use the first version of the velocity hodograph method (Ref. 9, pp. 250,251; Ref. 10, p. 60; Ref 11, pp. 603-606).

Taking account of relations (2.2) and (2.3) and proceeding in a similar way to that described earlier,22,23 we arrive at the relations

(2.5)

where M > 0 is the modelling scale constant. Writing the representations (2.5) for the different sections of the boundary of the domain �,
followed by integration over the whole of the contour of the auxiliary variable, we obtain the following expressions:

for the main geometric and seepage characteristics

(2.6)

for the coordinates of the points of the contour of the apron BC

(2.7)

and for the coordinates of the curvilinear part of the confining bed FG

(2.8)
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Here,

Putting t = ½ in Eqs (2.7) and (2.8) we find the required dimensions of the underground contour of the apron and the confining bed

(2.9)

The other expressions for the flow rate Q and the geometrical dimensions l1, d1, l3 and T are the control of the calculation:

(2.10)

Here,

3. Limiting cases. The Polubarinova-Kochina and Kochina case

We will first cinsider the case1,2 when the confining bed is horizontal along its whole extent. Then, in the plane of motion z, the points
G and F merge at infinity and the rectangle of the plane of the auxiliary variable � is transformed into the half-strip 0 < Re� < 1/2, 0 < Im� < ∞
(Fig. 4), since k = 1, k’ = 0, K = �/2, K’ = ∞ and, consequently, � = ∞. The solution in this limiting case is obtained from formulae (2.5)-(2.10)
if we put k = 0 in them. It follows from formulae (2.9) and (2.10) that, at the same time, l2 = ∞, l3 = ∞, and expressions (2.6) for H and T can
be integrated in explicit form:

(3.1)

Formulae (3.1) are identical with known formulae (Ref. 2, p. 19, formulae (7.17) and (7.18)) if account is taken of the fact that the
parameters 	 and 
 from Ref. 2 are related to the parameters used here as follows:

Another limiting case is obtained from the general scheme if the points F1, F and E in the plane of flow merge, that is, when there is no
horizontal impermeable section and the confining bed turns out to be curvilinear over its whole extent.12 In this case, in the � plane the



E.N. Bereslavskii / Journal of Applied Mathematics and Mechanics 73 (2009) 426–433 431

Table 1

parameter varied l1·103 d1·103 l2·103 l3·103 parameter varied l1·103 d1·103 l2·103 l3·103

�0·103 = 85 838 375 2038 1835 H = 1.2 85 76 2646 900
90 662 329 2035 1677 1.4 170 133 2410 1028
100 397 161 1640 1051 1.6 273 186 2228 1160
120 359 118 1026 1018 1.8 395 230 2072 1288
Q = 1.4 571 226 2426 2014 T = 1.1 710 55 1265 1543
1.6 587 209 2808 2439 1.3 682 101 1454 1562
1.8 597 200 3192 2846 1.7 598 202 1795 1626
2.0 601 195 3579 3245 1.9 553 246 2020 1668
�l·102 = 30 298 290 2233 1509 �d·103 = 25 340 588 2135 1519
37 251 495 2196 1426 30 566 230 2030 1560
44 88 676 2174 1331 35 721 67 1949 1600
50 0 735 2173 1254 40 757 0 1928 1618

parameter c = �/2, and the solution is obtained from formulae (2.5)-(2.10) if we put C = 1 in them. Here, it follows from formulae (2.9) and
(2.10) that l3 = 0.

4. Calculation scheme and analysis of the numerical results

Representations (2.5)–(2.10) contain five unknown constants A, B, C, k and M. Relation (2.4), the right-hand side of which (by virtue
of the asymptotics21 K’/K = �/(2ln(4/k’))) cannot be specified in an arbitrary manner and lies in a certain range, serves to determine the
modulus of the elliptic integrals k. The latter is determined by the critical values Q* and H*, which correspond to the cases when k ≈ 0 and
k ≈ 1. Note that a similar situation has already arisen in numerical calculations.24 The three other mapping parameters A, B and C (0 < A < 1,
0 < B < C ≤ 1) are determined from Eqs (2.6) for given values of �l, �d and T and the modelling constant M is found in advance from the
third equation of (2.6), which fixes the acting pressure head H. After the unknown constants have been found, the required dimensions of
the underground contour of the installation l1 and d1 and the quantities l2 and l3 are successively found using formulae (2.9), the width
and lowering of the dam l = l1 + �l and d = d1 + �d and, finally, the coordinates of the points of the underground contour of the installation
BC and the curvilinear part FG are calculated using formulae (2.7) and (2.8) respectively.

The flow pattern, calculated when

(4.1)

is shown in Fig. 1.
Results of calculations of the effect of the governing physical parameters �0, H, Q, T, �l, �d on the dimensions l1, d1 (and, consequently,

on l and d), l2 and l3 are shown in Table 1, which is subdivided by the double lines into six blocks. In each of them, one of the above mentioned
parameters is varied (over a permissible range) and the values of the remaining parameters are fixed in accordance with equalities (4.1).
Graphs of d1 and l1 against the parameter T are shown in Fig. 5 and graphics of l2 and l3 against the parameter Q are shown in Fig. 6.

Analysis of the data in Table 1 and the graphs anables the following conclusions to be drawn.

Fig. 5.
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Fig. 6.

A decrease in the flow rate and an increase in the pressure head acting on the installation lead to an increase in all the dimensions of
the dam as well as of the magnitude of the horizontal section of the confining bed. According to the data in the upper left block of Table 1,
increasing the rate by a factor of 1.4 leads to an increase in the width l1 and the depth d1 by a factor of 2.3 and 3.2 respectively. At the same
time, the most important influence on the width of the dam and its depth is found to be the acting pressure head: the data in the upper
right block of Table 1 show that, when the parameter H increases by a factor of 1.5, the values of l1 and d1 increase by a factor of 4.6 and 3
respectively.

It follows from the data in the middle left block of Table 1 that an increase in the parameter Q by a factor of 1.4 leads to very insignificant
changes in the sizes of l1 and d1 (by 5% and 16% respectively) so that the seepage flow rate has barely any effect on the dimensions of the
dam. There is a noteworthy tendency for the width of the dam l1 to increase when the seepage flow rate Q is increased and the thickness
of the bed T is reduced and, also, for an increase in the depth d1, conversely, when the parameter Q is decreased and T is increased (Fig. 5).
It is clear from the data in the middle right block of Table 1 that, together with the parameter H, the thickness of the bed has a strong effect
on the depth d1, changing the latter by a factor of 4.6.

The lower blocks of Table 1 reflect a regularity which is natural from a physical point of view: a decrease (growth) in the width of the
dam l and an increase (decrease) in its depth d leads to increase in the difference �l(�d). For instance, when �l changes by 47%, the width
l1 decreases by a factor of 3.4 and the depth d1 increases by a factor of 2.3 and, when �d changes by 40%, the width of the dam l1 increases
by the same factor of 2.3 while the depth d1 now decreases by a factor of 8.8. A different behaviour of the dam dimensions l1 and d1 is
observed when the parameters T and �d are varied and, conversely, the same qualitative from of the dependence of these dimensions on
the parameters T and �l.; an increase in the latter parameters leads to an increase in the depth of the dam d1 and a reduction in its width l1.
The last row of Table 1 corresponds to cases of flow past a raffet (tooth) when l1 = 0, l = �l and an apron with a horizontal insertion where
d1 = 0, d = �d.

The character of the emergence of water into the lower race l2 and of the size of the horizontal segment of the confining bed l3 are of
special interest. According to the data in the middle blocks of Table 1 and Fig. 6, the width l2 increases as the parameters Q and T increase
and decreases as �0, H, �l and �d increase. The values of l2 and l3 can be very significant here. For instance, it follows from the data in
the middle left block of Table 1 that l = 0.909, d = 0.489, l2/l = 3.9, l3/l = 3.6, l2/d = 7.3, l3/d = 6.6 when Q = 2. For all the blocks in Table 1, it is
noteworthy that l2 > l3 when T > 1.5 and that the ratio l2/l3 can be close to three (see the upper right block of Table 1).
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